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Abstract. Theoretical results on spatial optical bright solitons excited in arrays of nonlinear defocusing
waveguides, that result from the photovoltaic effect in a photorefractive material, are presented. The ex-
istence of four types of stationary discrete bright staggered solitons, on-site, inter-site, twisted inter-site,
and twisted on-site solitons, is shown both analytically and numerically, and their stability properties are
investigated. The maximum Hamiltonian of staggered solitons with the same total power corresponds to
stable modes. It is shown that for low total power the on-site mode is stable while in the high power
regime the inter-site mode is stable. These results are confirmed numerically. In addition, steering prop-
erties of localized modes are investigated by introducing a transversal translational shift. Because of the
translational symmetry between on-site and inter-site localized modes they are considered as two dynam-
ical realizations of the same moving mode, and the formalism of the Peierls-Nabarro effective potential is
applied to interpret the exchange between trapping and steering of these modes. This critically depends
on the mode’s total power and the introduced phase difference. On the other hand, steering of twisted
inter-site and on-site localized modes is not numerically observed. Instead, transversal perturbation leads
to a transformation of twisted modes either into a trapped on-site mode of smaller power and radiation,
or into two trapped on-site modes.

PACS. 42.65.Tg Optical solitons; nonlinear guided waves – 42.82.Et Waveguides, couplers, and arrays –
63.20.Pw Localized modes

1 Introduction

The phenomenon of localization through nonlinearity and
discreteness has been confirmed by many experimental
observations in physical systems ranging from electronic
and magnetic solids, through micro-engineered structures
including Josephson junctions and optical waveguide ar-
rays, to laser induced photonic crystals [1]. Currently the
most interesting experimental and theoretical investiga-
tions of these so-called intrinsic localized modes, which
are also known as discrete breathers [2,3], are related to
Bose-Einstein condensation [4,5], biopolymers [6], and all-
optical logic and switching devices [7]. Concerning the last
mentioned systems, it has been shown that particularly
photorefractive nonlinearities can support self-trapping of
optical beams generating diverse types of nonlinear local-
ized modes: quasi-steady-state solitons [8], screening soli-
tons [9], and photovoltaic solitons [10–12]. Experimentally
it has been confirmed that spatial solitons resulting from
the photovoltaic effect in a photorefractive material differ
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from both Kerr and other types of photorefractive solitons
in physical origin, dependence on light intensity and ma-
terial properties, and their temporal behavior [12–14]. For
practical purposes interesting properties of photovoltaic
solitons are their generation at low (microwatts level and
below) power, and complete control of their width through
the intensity. Thus the investigation of the characteristics
of photovoltaic solitons is a quite intriguing task.

In the present paper one-dimensional (1D) bright dis-
crete photovoltaic solitons are considered both analyti-
cally and numerically. The optical pulse propagation in
an array of coupled defocusing optical waveguides that
are lossless, identical, and regularly spaced is modelled
assuming only nearest-neighbor interactions. The theoret-
ical model in form of nonlinear difference-differential equa-
tions is presented in Section 2. Note that in the present
context, the array of coupled optical waveguides is equiv-
alent of the one-dimensional optical lattice. Two types
of stationary solutions are found: homogenous solutions
and localized modes, which are discussed in Section 3.
Due to the characteristics of self-defocusing media, only
staggered localized modes can exist. Among them on-site,
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inter-site, twisted inter-site, and twisted on-site bright
solitons are distinguished. The existence and stability of
these four staggered localized modes are investigated in
detail. The propagation of localized modes is governed by
two coexisting effects, i.e., spatial diffraction and nonlin-
earity, and these effects are numerically treated. In ad-
dition, the examination of the stability of the obtained
localized modes with respect to transversal translational
shifts is performed in Section 4. The transversal propaga-
tion of the transversally symmetric on-site and inter-site
localized modes is considered from the viewpoint of the
effective Peierls-Nabarro (PN) potential. A brief overview
of the results is presented in the conclusion.

2 Model

The evolution equation of optical pulse propagation in the
presence of a photovoltaic effect in bulk photorefractive
defocusing media can be written as [15]:

i
∂U

∂ξ
+

1
2

∂2U

∂s2
− β

|U |2U
1 + |U |2 = 0, (1)

where U = I/Id is the normalized slowly varying envelope
of the electric field of the light wave, I is the intensity of
the beam while Id is the dark irradiance, and ξ = z/kx2

0

is a dimensionless coordinate along the beam propaga-
tion direction. Here x0 is an arbitrary spatial width while
k = 2πno/λ0 is the wave number with the unperturbed
background refractive index no and light wavelength λ0.
The parameter s = x/x0 is the normalized transverse co-
ordinate, β = (kx0no)2r33Epv/2 > 0 is the nonlinearity
parameter, r33 is the electro-optic coefficient, and Epv is
the amplitude of the photovoltaic space charge electric
field [12].

We further assume that the evolution of the slowly
varying envelopes of the individually guided modes of a
homogeneous array of single-mode waveguides can be de-
scribed by a discrete equation with nearest neighbor inter-
actions of the weakly overlapping fields. For lossless defo-
cusing optical waveguides the normalized model equation
derived from (1) then reads:

i
∂Un

∂ξ
+ K(Un+1 + Un−1 − 2Un) − β

|Un|2Un

1 + |Un|2 = 0, (2)

where Un is the wave function in the nth lattice element,
n = 1, 2, ..., N , with UN+1 = U1 for the case of peri-
odic boundary conditions, K = 1/(2h2) is the coupling
constant, h = (L − Nd)/Nx0 is the normalized distance
between two elements, L is the x-width of the nonlin-
ear waveguide array, and d represents the width of a sin-
gle waveguide. In the small amplitude limit |Un|2 � 1,
equation (2) is the well-known (1+1) discrete nonlinear
Schrödinger equation with Kerr nonlinearity [16,17]. In
the large amplitude limit the nonlinear term takes the
form |Un|2Un /(1 + |Un|2) → Un.

For an arbitrary value of N , the system (2) possesses
two conserved quantities, total power

P =
∑

n

|Un|2, (3)

and Hamiltonian (or the system’s total energy)

H =
∑

n

{
β

[|Un|2 − ln (1 + |Un|2)
]
+ K|Un−1 − Un|2

}
.

(4)
A general analytical solution cannot be obtained since this
system is non-integrable. However, a few stationary solu-
tions can be found both numerically and analytically.

In the present paper numerical calculations are per-
formed with the parameter set h = 0.5 and β = 17.88,
which corresponds to a distance between two channels
of 4 µm and a photovoltaic field of Epv = 50kV/cm.
The model equation is numerically solved by a 6th or-
der Runge-Kutta procedure [18,19] with the stationary
solution profile as initial condition. All calculations are
performed with double-precision accuracy with regularly
checking of the conservation of total power and Hamil-
tonian. Depending on the solution type and with respect
to the periodic boundary conditions, the total number of
equations N is taken as odd or even number (here N = 101
or N = 100) which is noted separately in each case.

3 Stationary solutions

Among the stationary solutions of our model equation (2),
the homogenous solutions (extended modes) and the so-
lutions of solitary type (localized modes) are investi-
gated [12,18,19]. Their existence region and stability prop-
erties are considered analytically and numerically in order
to understand the localization process governed by diffrac-
tion and nonlinearity in the waveguide lattice. It is ex-
pected that the transverse propagation of these nonlinear
localized modes can be directed by their total power and
energy.

3.1 Stationary homogenous solutions

The system (2) possesses two trivial homogenous solu-
tions, unstaggered (Kb = 0) and staggered (Kb = π),
with lattice-independent constant amplitudes:

Un = U0 exp (iKb n) exp (iν ξ) , (5)

U0,unstaggered =
√

ν

β − ν
,

U0,staggered =

√
ν − 4K

β − ν + 4K
. (6)

The existence range of the unstaggered mode is 0 < ν < β,
while the analogous range for the staggered one is 4K <
ν < β−4K. These homogenous solutions have the form of
nonlinear Bloch waves as described in the literature [20].
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The instability to periodic modulations of a certain
wavelength, i.e., modulational instability, is one of the
most significant problems related to the propagation of
nonlinear homogenous modes [20–23]. The stability prop-
erties of homogenous modes are studied by observing the
evolution of periodic weak perturbations (∝ cos(2πn/N)
exp (iκb)) [20]. Briefly, a linear stability analysis [19] re-
sults in the following dispersion relations:

Ω2 = 4K2

[
cos (κb) cos
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)
− cos (Kb)

]2

+ 4K

[
cos (κb) cos

(
2π
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)
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]
(7)

×
[
4K sin2

(
Kb

2

)
+

(
ν − 4K sin2 (Kb/2)

)2

β
− ν

]
,

where κb = 0 or κb = π for unstaggered or staggered
perturbations, respectively, and Ω determines the time
behavior of the perturbation (∝ exp (−iΩξ)). The corre-
sponding instability ranges, which are defined by Ω2 < 0
taking into account the existence conditions, are:

ν2 < νunst. < β , (8)
max (4K, ν1) < νst. < min (ν2, β − ν + 4K), (9)

where

ν1,2 = a2
1 ± √

(1 − 4a1a3/a2
2)

2a1
, (ν2 > ν1) (10)

and

a1 =
1
β

, a2 = 1 +
8K sin2 (Kb/2)

β
,

a3 = K

[
cos (κb) cos

(
2π

N

)
− 3 cos (Kb) + 2

]

+
16K2 sin4 (Kb/2)

β
.

However, the linear stability analysis gives no informa-
tion about the behavior of the system when this insta-
bility grows. According to earlier results obtained for
both Kerr and saturable nonlinearities in a self-defocusing
medium [20,24], it is expected that the process of mod-
ulational instability is responsible for energy localization
and the creation of discrete solitary solutions.

Our analytical estimations concerning the existence
region of both unstaggered and staggered homogenous
modes, and the onset of instability are proved numeri-
cally. Moreover, the evolution of the system beyond the
instability point is checked by additional numerical sim-
ulations. The results qualitatively correspond to the case
treated in reference [25].

For small power modulational instability results in a
concentration of the pulse energy in one waveguide (lo-
calization) as plotted in Figure 1a. The pulse profile for
higher power is more irregular then for smaller power as
is shown in Figure 1b. In accordance with the conclusions

Fig. 1. Evolution of an initially modulated staggered homoge-
nous mode (with added unstaggered periodic perturbation)
with total power (a) P = 6.3 and (b) P = 22.2. The total
number of waveguides is N = 50. In the figure the waveguides
are numbered as n = 1, 2, ..., N .

derived in [25], the nonlinear mode coupling finally takes
over, the number of excited modes increases, and the pulse
profile for high power reaches a chaotic-like state in which
all wavelengths are present. The transition to this state is
sharp and associated with an abrupt rise of the maximum
amplitude along the lattice.

3.2 Stationary staggered solitary solutions

Stationary localized modes in the form of discrete bright
solitons (i.e. nonlinear localized modes with exponentially
decaying asymptotics) can be obtained from equation (2)
assuming solutions in the form Un(z) = fn exp (−iν ξ) and
ordering |fn| � |fn−1| � ... � |fnc |, where nc notes the
central waveguide. The resulting set of coupled algebraic
equations for the real functions fn is:

ν fn + K (fn+1 + fn−1 − 2fn) − β
|fn|2fn

1 + |fn|2 = 0. (11)

The two types of stationary localized mode profiles can
be distinguished as unstaggered and staggered ones with
patterns fn = exp (iKb n)Fn, where Kb = 0 and Kb = π,
respectively, and Fn = |fn| > 0. Because of the charac-
teristics of self-defocusing media only staggered localized
modes can exist in the actual model. In the corresponding
equation that includes reflection symmetry with respect
to equation (11) only unstaggered solitary solutions exist.
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Fig. 2. Different staggered localized modes for the same power P = 2.056: (a) on-site staggered soliton, (b) inter-site staggered
soliton, (c) twisted inter-site staggered soliton, and (d) twisted on-site staggered soliton. Note that n = ... − 2,−1, 0, 1, 2, ... for
on-site and twisted on-site modes, and n = ... − 2,−1, 1, 2, ... for inter-site and twisted inter-site localized mode.

3.2.1 On-site and inter-site staggered solitonss

The two basic types of localized staggered modes are
on-site modes that are centered at a nonlinear waveg-
uide element, and inter-site modes centered between two
neighboring waveguides (Fig. 2). The waveguide index for
on-site modes is n = −N/2,−N/2 + 1, ..., nc, ..., N/2 −
1, N/2, where nc = 0 and N is an odd number, or
n = −N/2,−N/2 + 1, ...,−1, 1, ..., N/2 − 1, N/2, where
nc = 1 and N is an even number for inter-site modes,
respectively. Thus, f|n| = (−1)sf−|n|−s with s = 0 for
on-site modes and s = 1 for inter-site modes [20] (|n| =
nc, nc + 1, ..., N/2).

When considering on-site staggered localized modes in
the lattice elements with |n| > 1, the total power Po and
Hamiltonian Ho can be approximately calculated [19] as:

Po = F 2
0

(ω − 2)2 + 1
(ω − 2)2 − 1

, (12)

Ho = −γ ln (1 + F 2
0 ) − 2γ ln

( ∞∏

n=1

(
1 +

F 2
0

(ω − 2)2n

))

+2F 2
0

ω − 1
ω − 3

+ γPo, (13)

where ω = ν/K, γ = β/K, and the amplitude of the on-
site staggered soliton is defined as:

F 2
0 =

(ω − 2)2 − 2
(γ − ω + 2)(ω − 2) + 2

,

f|n| = f−|n| = (−1)|n|
F0

(ω − 2)|n|
. (14)

Adopting the same procedure a inter-site staggered lo-
calized mode is characterized by the total power Pi and
Hamiltonian Hi:

Pi = 2F 2
1

(ω − 2)2

(ω − 2)2 − 1
, (15)

Hi = −2γ ln

( ∞∏

n=1

(
1 +

F 2
1

(ω − 2)2(n−1)

))

+2F 2
1

3ω − 7
ω − 3

+ γPi. (16)

Here the corresponding amplitudes of inter-site staggered
modes in each waveguide can be written as:

F 2
1 =

(ω − 3)(ω − 2) − 1
(γ − ω + 3)(ω − 2) + 1

,

f|n| = −f−|n| = (−1)|n|−1 F1

(ω − 2)|n|−1
. (17)

3.2.2 Twisted on-site and inter-site staggered solitons

It has been shown in the literature that, because of a pe-
riodic modulation of the medium’s refractive index, two
out-of-phase bright solitons can form bound states, so-
called ‘twisted’ localized modes [20,26]. Such solutions do
not have their continuous counterparts, and they exist
only when the discreteness effects are strong (for fixed
value β = 17.88, h > 0.4). The properties of these twisted
modes depend on the separation between the modes form-
ing a bound state. Here the existence of staggered twisted
modes is shown analytically and numerically.
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Following the procedure developed for on-site and
inter-site staggered localized modes total power P , Hamil-
tonian H , and amplitude of the inter-site twisted stag-
gered mode (with the pattern .., f−2 = −F2, f−1 =
F1, f1 = F1, f2 = −F2, ... where Fn is always a positive
number, Fig. 2c) are approximately:

Pti = 2F 2
1

(ω − 2)2

(ω − 2)2 − 1
(18)

Hti = −2γ ln

( ∞∏

n=1

(
1 +

F 2
1

(ω − 2)2(n−1)

))

+2F 2
1

ω − 1
ω − 3

+ γPti (19)

F 2
1 =

(ω − 3)(ω − 1) − 1
(γ − ω + 1)(ω − 2) + 1

,

f|n| = f−|n| = (−1)|n|−1 F1

(ω − 2)|n|−1
. (20)

In addition, the model equation (2) allows one more
type of stationary staggered photovoltaic solitons, the so-
called twisted on-site staggered localized mode with a pat-
tern in the form .., f−2 = F2, f−1 = −F1, f0 = 0, f1 =
F1, f2 = −F2, ... Figure 2d. The total power, Hamiltonian,
and amplitudes at the waveguide sites can be written as:

Pto = F 2
1

(ω − 2)2

(ω − 2)2 − 1
(21)

Hto = −2γ ln

( ∞∏

n=1

(
1 +

F 2
1

(ω − 2)2(n−1)

))

+4F 2
1

ω − 2
ω − 3

+ γPto (22)

F 2
1 =

(ω − 3)(ω − 1)
(γ − ω + 2)(ω − 2) + 1

,

f|n|≥1 = −f−|n| = (−1)|n|−1 F1

(ω − 2)|n|−1
. (23)

The relations H(P ) for all localized modes obtained ana-
lytically using equations (12–23) can fairly well reproduce
the corresponding numerically observed curves. The nu-
merically obtained shapes of curves H(P ) for all localized
staggered modes are presented in Figure 3. In addition,
the existence region of stationary staggered solitons esti-
mated analytically (Eqs. (12–23)) and numerically is ap-
proximately: 4 < ω < γ + 4.

3.2.3 Stability of the staggered localized modes

Considering the stability of staggered localized modes it
is worth to mention that the compensation of discrete
diffraction and nonlinearity, which results in the forma-
tion of localized staggered modes, is here possible only
by relating a negative effective mass to the system [5,16].
Then the sign of diffraction is reversed when compared
with the problem with reflection symmetry, where the un-
staggered mode with minimum Hamiltonian is stable. This

Fig. 3. Hamiltonian H versus total power P for on-site (solid
curve), inter-site (dashed curve - short dashes), twisted inter-
site (dash-dotted curve), and twisted on-site (dashed curve -
long dashes) solitons. The inset shows the difference of Hamil-
tonians for on-site (Ho) and inter-site soliton (Hi).

Fig. 4. Conversion of an inter-site mode of small power P =
2.056 into the corresponding on-site mode with the same power
for Hi < Ho. Note that n = ...,−2,−1, 1, 2...

results in the stability of the staggered mode with max-
imum Hamiltonian. Our numerical calculations confirm
this stable propagation of an on-site staggered localized
mode with P < 16 when Hmax = Ho, or an inter-site
localized mode with P < 0.5 when Hmax = Ho ≈ Hi

and P > 16 when Hmax = Hi, as can be seen in Fig-
ure 3. The inter-site staggered mode converts into an
on-site staggered mode with the same power for power
ranges with Hmax = Ho (Fig. 4), and an on-site stag-
gered mode converts into an inter-site staggered mode
with equal power when Hmax = Hi. As can be seen,
the regions of small power on-site and inter-site modes,
P < 0.5, and higher power on-site and inter-site modes
with P ≈ 16, are characterized by simultaneous stability
of both mentioned modes. It happens if Ho ≈ Hi and is
signed as the marginal stability region. As expected, the
stability properties of the localized on-site and inter-site
solitons for small values of P are in accordance with the
corresponding behavior of systems with defocusing Kerr
nonlinearity [19].

Alternatively, the stability of the localized modes is
considered in the context of the convexity of the Hamilto-
nian vs. total power curve [27]. According to the analysis
in [27], the convexity of the H − P curve (d2H/dP 2 > 0)
is the necessary condition for the stability of the localized
mode in the self-defocusing media. In our case all coexist-
ing localized modes satisfy the condition d2H/dP 2 > 0
(Fig. 3) and for the given value of total power P the
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stabile one is the localized mode with the maximum value
of the Hamiltonian.

Considering the inter-site twisted and on-site twisted
solitons, the numerical analysis reveals that both types
are always unstable with respect to transversal perturba-
tions. This behavior can be associated with the ordering of
the values of the corresponding Hamiltonians for localized
modes plotted in Figure 3. Namely, for a given power the
value of the Hamiltonian for both twisted modes is smaller
than the corresponding values for on-site and inter-site lo-
calized modes.

4 Steering effect

In this section the dynamics of propagating localized
modes is considered. The translational symmetry between
on-site and inter-site staggered solitons allows to consider
them as two dynamical states of a single moving mode [28].
Then the concept of the PN effective potential [2,19,29,28]
caused by the system’s discreteness can be applied for in-
terpretation of their dynamical properties. The amplitude
of the PN potential is considered equal to the minimum
barrier which must be overcome to translate the center of
mass of the system by half a lattice period. Correspond-
ingly, the PN potential is the difference in energy between
on-site and inter-site stationary localized modes for the
same power level Po = Pi = P :

∆Eoi = Ho − Hi. (24)

In Figure 5 the shape of the curve ∆Eoi(P ) generated
numerically is presented. As can be seen, ∆Eoi(P ) is pos-
itive for small and mediate P values and becomes negative
for high P > 16. The curve ∆Eoi(P ) obtained analytically
using equations (12–23) can be fairly well fitted to the cor-
responding numerically obtained curve, especially in the
region of low and mediate power, as shown in Figure 5.

Finally, it is worth to mention a particularity of the
present type of nonlinearity (Eq. (2)) when observing the
amplitudes in the central waveguide and two first neigh-
bors, Figure 6. Here the amplitudes in the central waveg-
uides monotonically increase changing only the increas-
ing rate with total power from small values for small and
medium powers to the very high increasing rate for high
powers. Note that in the last limit the nonlinearity re-
duces to the linear term (see Sect. 2). This is different
from the cascade nature of the amplitude saturation in
reference [18] and related with the shape of the PN po-
tential. Accordingly, in present case the PN potential do
not possess several zeros as in reference [19].

The localized modes are numerically forced to move
transversally by introducing a small phase difference
(phase offset) between adjacent lattice elements [21] in
the form exp (i k n), where the parameter k is noted as
the phase difference. An input on-site or inter-site soliton
with small total power (P < 0.5) and small PN potential
(Fig. 5) having a linear phase gradient can excite mov-
ing breathers, which propagate under small angles rela-
tive to the waveguide channels. The steering velocity is

Fig. 5. Comparison of analytically and numerically obtained
PN effective potential, ∆Eoi = Ho − Hi), versus soliton
power P .

Fig. 6. Absolute value of amplitudes Fn = |fn| in the central
waveguide and the first two neighbors as a function of P for
(a) on-site, (b) inter-site, (c) twisted inter-site, and (d) twisted
on-site stationary solitons.

proportional to the introduced phase difference, which is
illustrated in Figure 7. As the PN potential increases, the
direction of transversal propagation may change and fi-
nally, when the soliton cannot overcome the PN potential,
the inter-site and on-site mode transform into a trapped
on-site breather in one of the waveguide channels. An ex-
ample is given in Figure 8. Trapping prevails also in the
region of the second zero of the PN potential where highly
localized modes (i.e. modes with high power) are very ro-
bust and may resist transversal shifts. Above the last men-
tioned PN potential value, i.e. in the region with negative
PN potential, the phase tilted localized mode converts into
a trapped inter-site breather.

The dynamics of twisted inter-site and twisted on-site
solitons with phase offsets is rather complex. The twisted
inter-site and twisted on-site modes are transformed into
a trapped on-site breather with either the same (this ap-
pears only for twisted inter-site modes with small pow-
ers P < 7 and small phase tilt) or smaller total power.
In the latter case, the difference in the corresponding
power leads to energy radiation into the lattice. On the
other hand, twisted inter-site modes with higher power
as well as twisted on-site modes can be converted by an
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Fig. 7. Steering of an inter-site localized mode with P = 0.1
as a function of relative phase difference k: (a) k = 0 (stable
propagation), (b) k = 0.25π (moving breather), and (c) k =
0.5π (moving breather that is faster then in (b)). Note that
n = ...,−2,−1, 1, 2...

Fig. 8. Steering effect of on-site modes with (a) P = 0.582, k =
0.5π (free movement) and (b) P = 0.655, k = 0.5π (trapping).

appropriate phase tilt into two trapped breathers with
smaller total power, as illustrated in Figure 9, in consis-
tence with the conservation of both P and H .

Fig. 9. Twisted inter-site mode with P = 9.265 (a) without
relative phase difference, k = 0, and (b) with k = 0.25π. In the
latter case the twisted mode converts into a on-site mode and
radiation. In addition the evolution of twisted on-site localized
modes with P = 12.693 is shown: (c) without mode distortion
for k = 0 and (d) with resulting conversion into two localized
modes for k = 0.5π.

5 Conclusion

In conclusion, we have done a step ahead in understand-
ing the nature and behavior of internal localized modes
governed by both discreteness and nonlinearity, which is
an important issue in the context of many diverse fields
such as dynamical lattices, repulsive Bose-Einstein con-
densates in periodic potentials, solid state physics, non-
linear optics, etc. The propagation of bright spatial dis-
crete solitons that results from the photovoltaic effect in
a photorefractive material is modelled. It has been shown
that self-focusing may be observed in an array of cou-
pled defocusing nonlinear waveguides and that this ef-
fect leads to the creation of self-localized, soliton-like pat-
terns with characteristic relative phase differences of π
between neighboring waveguides, named staggered local-
ized modes. Four localized patterns are found analytically:
on-site, inter-site, twisted inter-site, and twisted on-site
staggered modes, and their existence is confirmed numer-
ically. The stability of the staggered localized mode with
the maximum Hamiltonian is numerically confirmed. It is
shown that two stability regions exists: in the small power
region on-site modes are stable while in the high power
region inter-site modes are stable.

The transversal propagation, i.e. steering of the on-
site and inter-site modes as two dynamical states of the
same localized mode, are considered in the context of the
Peierls-Nabarro potential barrier. Our numerical results
demonstrate the mobility of on-site and inter-site stag-
gered localized modes in the low power region with low
PN barrier. Increasing the power and thus the PN barrier
leads to decreasing of soliton mobility eventually followed
by spatial trapping of the modes on a lattice site. The en-
hanced mobility of high power solitons near the zero of the
PN barrier is not observed numerically. On the other hand,
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steering of twisted inter-site and on-site localized modes is
not numerically observed, too. Instead, transversal pertur-
bation leads to a transformation of twisted modes either
into a trapped on-site mode with smaller power and radi-
ation, or into two trapped on-site modes.
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of Science, Development and Technologies of Republic Serbia
(project 1964) and the German Federal Ministry of Education
and Research (BMBF, grant DIP-E6.1).
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18. M. Stepić et al., Phys. Rev. E 69, 066618 (2004)
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